Cavern construction techniques are helping to minimise disruption during delivery of Brisbane’s new underground rail link. Rail traffic in the Australian city of Brisbane, south east Queensland is currently constrained by a single bridge over Brisbane River, but work is underway to add capacity, reliability and connectivity to the region’s network. The solution is Cross River Rail, a new rail link with a tunnelled section through the city centre. It will boost the number of trains crossing the river from 16 to 18 per hour to 24 trains per hour.
Cross River Rail is 10.2km long and runs between Dutton Park and Bowen Hills with a central 5.9km long twin bored tunnel section. Four new stations with 220m long platforms – at Boggo Road, Woolloongabba, Albert Street and Roma Street – will also allow the network to carry nine car trains instead of the six car services which run at present.
The Queensland Government has described the project as a “critical public transport infrastructure project” that will improve quality of life, boost the economy and activate urban development. It expects the population in south east Queensland to grow from 3.5M to 4.9M over the next 15 years with the main focus for employment growth expected to be the city centre, placing further pressure on the transport network.
Despite the clear need for the scheme, getting to the construction phase has not been straightforward. Plans to increase public transport capacity across the city have been mooted for more than 25 years with various combinations of rail-only, bus-only and combined train and bus options considered on a number of different routes. However, a new state government in 2017 gave the project the political support it needed and work started to push ahead on the rail solution – now known as Cross River Rail – soon after the election.
The Cross River Rail logo looks very similar to Crossrail.
Is it just me, or are the trains shown in the tunnelling cross-section actually tilting significantly to the right?
@Greg T
It’s the cant of the track to minimise lateral centrifugal force in curves.